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Introduction

m Let r and ¢ be given fixed integers such that 2 </ <r—1. A
hypergraph H on vertex set [n] is an r-uniform hypergraph
(r-graph for short) if each edge is a set of r vertices.

m An r-graph is said to be linear if every pair of distinct edges
intersect in at most one vertex.

m Linear hypergraphs are the subject of much study, and one
reason is that they are a natural generalization of simple
graphs.

m An r-graph is called a partial Steiner (n, r, )-system, if every
subset of size ¢ (¢-set for short) lies in at most one edge of H.

m In particular, partial Steiner (n, r,2)-systems are linear
hypergraphs.

m Let H,(n, m) denote the set of r-graphs on the vertex set [n]
with m edges, and let £,(n, m) denote the set of all linear
hypergraphs in H,(n, m).



Introduction

m The uniform hypergraph process H,(n, m) is a Markov process
with time running through the set {0,1,---, (7)}. It is the
typical random graph process G(n, m) introduced by Erdés
and Rényi when r = 2.

m Similarly, the partial Steiner (n, r,{)-system process begins
with no edges on vertex set [n] at time 0, all r-sets arrive one
by one according to a uniformly chosen random permutation,
and each one is added if and only if it does not overlap any of
the previously added edges in ¢ or more vertices.

m In particular, it is the linear hypergraph process when ¢ = 2.

m Let LE(n, m) with 2 < £ < r — 1 denote the m-th stage of the
uniform partial Steiner (n, r, )-system process, and IL.2(n, m)
is also denoted as L,(n, m).



Introduction

m The hitting time of connectivity is a classic problem which has
been extensively studied in the theory of random graph
processes.

m Bollobas and Thomason in 1985 proved that, with probability
approaching to 1 when n — oo (w.h.p. for short), m = 7 log n
is a sharp threshold of connectivity for G(n, m) and the very
edge which links the last isolated vertex with another vertex
makes the graph connected.

m Poole in 2015 proved the analogous result for H,(n, m) when
r > 3 is a fixed integer, which means that m = 7 log n is the
hitting time of connectivity for H,(n, m).



Introduction

m When working with random graphs (or random hypergraphs)
with a given number of edges, Bollobas and Thomason (and
Poole, respectively) could instead work in the binomial
random graph G(n, p)(and H,(n, p),respectively).

m The proofs are due to the fact that the m-th stage H,(n, m)
can be identified with the uniform random hypergraph from
H,(n, m), and behaves in a similar fashion when m equals or
is close to the expected number of edges of H,(n, p).

m This approach does not work for linear hypergraphs, as
choosing edges independently is very unlikely to result in a
linear hypergraph.



Introduction

m It might be surmised that the threshold of connectivity for
ILY(n, m) is smaller than the one for H,(n, m) because of its
constraint on r-graphs.

m Let 7. = min{m : LY(n, m) is connected}.

m Let 7, = min{m : LY(n, m) has no isolated vertices}.

m These two properties are certainly monotone increasing
properties, so 7. and 7, are well-defined in LY(n, m).

m For any fixed integers r and ¢ with 2 < ¢ < r — 1, we will
show that ILY(n, m) has the same threshold function of
connectivity with H,(n, m).

m And L{(n, m) also becomes connected exactly at the moment
when the last isolated vertex disappears.



Some Results

For any fixed integers r and £ with2 < /¢ <r—1, w.h.p,
m = 2 log n is a sharp threshold of connectivity for LLY(n, m) and
Te = To for ILf(n, m).

We also have a corollary about the distribution of the number of
isolated vertices in L¢(n, m) when m = 2(log n+ c,) and
¢, —> c R

For any fixed integers r and ¢ with2 < ¢ < r—1, let

m= 7 (Iog n+ cp) with ¢, — ¢ € R. The number of isolated
vertices in ILE(n, m) tends in distribution to the Poisson
distribution with mean exp[—c].

We will rely on the enumeration results.



Our Approach

m We ever obtained the asymptotic enumeration formula for
L,(n, m) when m = o(r_3n%). In fact, we can apply exactly
the same approach to obtain an asymptotic formula for
|£%(n, m)| when 3< < r—1and m= o(nz%l).

m It turns out that the proof is a little easier when ¢ > 3, as only
one type of cluster needs to be considered, compared with
four clusters in the case £ = 2.

m Hence, the asymptotic expression when ¢ > 3 is simpler than
the corresponding expression when ¢ = 2, so the statements
cannot be combined.



Our Approach

Let r = r(n) > 3 and m = m(n) be integers with m = o(r*3n%).
Then, as n — oo,
1£r(n, m)| =
_NT [r3[m]2  [r]3(3r® — 15r +20)m3 r°m?
T P T e T 24n* +O( n3 ) '

Theorem

For fixed integers r and ¢ such that 3 < { < r—1, let m = m(n)
be an integer with m = o(né%l). Then, as n — oo,
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Let r = r(n) > 3 and let pN = mg with mg = o(r_3n%). Then, as
n— 0o,

P[H/(n, p) € L,(n)]
exp g8 + 0(S3R)],
if mo = O(r=2n);
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Our Approach

We obtain the probability that H contains a given hypergraph as a
subhypergraph.

Theorem
Let r = r(n) > 3, m = m(n) and x = x(n) be integers with
m= o(r_3n%) and x = o(4— o ). Let X = X(n) be a given

r-graph in L(n,x) and H € ﬁz(n, m) be chosen uniformly at
random. Then, as n — oo,
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Proof of Main Results

Let
n n
my = —(logn—w(n)) and mg = —(logn+w(n)).

Lemma

Let H be chosen from L%(n, m) uniformly at random. W.h.p. there
are at most 2 log n isolated vertices in H when m = my, while
w.h.p. there are no isolated vertices in H when m = mg. Thus,

To € [mL, mR].

| A,

Lemma

If H is chosen uniformly at random from L%(n, m.), then w.h.p. H
has at most 2 log n isolated vertices and all remaining vertices are
in a giant component.




Proof of Main Results

Let H be chosen uniformly at random from L£%(n, m;). Assume
that H consists of a connected component and at most 2log n
isolated vertices. Let V; denote the collection of these isolated
vertices in H. We add mg — m; random edges to H, which are
denoted by e1, -, emgr—m, in sequence. If 7, < 7¢ then at least
one edge ¢; for 1 < j < mg — m_ must be added which contains
only isolated vertices.

If Hpg—m, is chosen uniformly at random from £%(n, mg), then we
have
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= o(1).

We have w.h.p. £%(n, mg) is connected.



Other Applications

For n>3, let r = r(n) >3, m= o(r—3n%?) and
t = t(n) = min{m, o(rﬁ"—;z)} The expected number of hypertrees
with t edges in an r-uniform linear hypergraph with m edges is

(rt —t+1)2rt[m];
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The expected number of matchings with t edges .... the expected
number of loose cycles with t edges....



Further Problems

We show the process IL(n, m) has the same threshold of
connectivity with H,(n, m). What about other extremal properties
of the partial Steiner (n, r, {)-systems process? For any fixed
integer g > 4, some researchers applied a natural constrained
random process to typically produce a partial Steiner
(n,3,2)-system with (1/6 — o(1))n? edges and girth larger than g.
The process iteratively adds random 3-set subject to the constraint
that the girth remains larger than g. In future work, we will
consider the final size of the partial Steiner (n, r, £)-system process
with some constraints on the girth.
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